Biasadisimbolkan dengan b. Misalnya, di suatu barisan memiliki suku pertama, yaitu 2. Suku pertama disimbolkan dengan U1 atau a. Lalu, di suku kedua (U 2 ), yaitu 5. Suku ketiga (U 3 ), yaitu 8, dan seterusnya. Berarti, barisan ini memiliki beda 3 pada setiap sukunya.

Halo Sobat Zenius, apa kabar? Di artikel ini, gue akan mengajak elo buat ngebahas rumus barisan dan deret aritmatika lengkap dengan penjelasan dan contoh soalnya. Rumus ini adalah salah satu materi matematika yang akan elo pelajari di SMA. Tapi sebelum masuk ke dalam rumus barisan dan deret aritmatika. Gue mau ngetes pemahaman elo tentang materi barisan dan deret aritmatika. Caranya, langsung aja klik tombol “MULAI LATIHAN SOAL” di bawah ini ya. Setelah elo tahu seberapa paham elo tentang materi ini, gue akan memberikan penjelasan singkat mengenai pengertian dan perbedaan dari keduanya. Biar makin paham dan gak bingung lagi, simak artikel yang satu ini sampai selesai ya. Pengertian Barisan AritmatikaRumus Barisan AritmatikaContoh Soal Barisan Aritmatika dan PembahasanPengertian Deret AritmatikaRumus Deret AritmatikaContoh Soal Deret Aritmatika dan PembahasanBarisan dan Deret Aritmatika dalam Kehidupan Sehari-hari Pengertian Barisan Aritmatika Seperti namanya barisan aritmatika adalah barisan bilangan yang memiliki beda yang sama sehingga menghasilkan pola tetap. Contoh bentuk barisan aritmatika bisa elo lihat di bawah ini Bentuk barisan aritmatika Nah, dari contoh di atas bisa elo lihat bahwa suatu barisan aritmatika akan berbentuk seperti ini U1, U1 +b, U1 +2b, U1 +3b, …… sampai n suku. Suku pertama adalah U1 atau a, selisihnya adalah b, dan n adalah jumlah suku. Ada beberapa rumus yang terkait dengan barisan aritmatika yang bisa elo gunakan untuk menghitung suku ke-n, jumlah, atau cara mencari beda b dari suatu barisan aritmatika. Rumus barisan aritmatika bisa elo lihat di bawah ini Rumus barisan aritmatika Un = suku ke-n U1 = a = suku pertama ke-1 dalam barisan aritmatika b = beda n = suku ke- Nah, setelah memahami cara mencari suku ke-n dalam suatu barisan aritmatika, elo juga bisa mencari beda b pada barisan aritmatika dengan menggunakan rumus berikut ini Rumus beda pada barisan aritmatika Contoh Soal Barisan Aritmatika dan Pembahasan Setelah mengetahui mengenai berbagai rumus barisan aritmatika, berikut ini udah gue kumpulin beberapa contoh soal barisan aritmatika lengkap dengan pembahasannya. Contoh Soal 1 Suku ke-40 dari barisan 7, 5, 3, 1, … adalah … Pembahasan Diketahui a = 7b = –2ditanya Jawab= 7 + 39 . -2= 7 + -78= – 71Jadi, suku ke-40 barisan aritmatika tersebut adalah –71. Contoh Soal 2 Rumus suku ke-n dari barisan 5, –2, –9, –16, … adalah … Pembahasan Diketahui a = 5 b = –7 Ditanya rumus suku ke-n barisan aritmatika tersebut = ? Jawab Jadi, rumus suku ke-n barisan aritmatika tersebut adalah Contoh Soal 3 Dalam suatu gedung pertunjukkan disusun kursi dengan baris paling depan terdiri dari 12 kursi, baris kedua berisi 14 kursi, baris ketiga berisi 16 kursi, dan seterusnya. Banyaknya kursi pada baris ke-20 adalah … Pembahasan Diketahui a = 12 b = 2 Ditanyakan Jawab Jadi, banyaknya kursi pada baris ke-20 adalah 50 kursi. Pengertian Deret Aritmatika Deret aritmatika sebenernya masih punya hubungan erat dengan barisan aritmatika. Banyak soal-soal deret aritmatika juga yang bisa elo pecahkan menggunakan kombinasi rumus barisan aritmatika. Pada dasarnya, pengertian deret aritmatika adalah baris yang nilai setiap sukunya didapatkan dari suku sebelumnya melalui penjumlahan atau pengurangan dengan suatu bilangan. Rumus Deret Aritmatika Nilai suku pertama dilambangkan dengan a. Sedangkan, selisih atau beda antara nilai suku-suku yang berdekatan selalu sama yaitu b. Untuk mengetahui nilai suku ke-n dari suatu barisan arimatika dapat dihitung dengan rumus berikut. Rumus deret aritmatika Sn = jumlah n suku pertamaU1 = a = suku pertama ke-1 dalam barisan aritmatikab = bedan = banyak suku dalam barisan aritmatika Nah, di awal tadi elo udah tau untuk mengetahui nilai suku ke-n Un dari suatu barisan aritmatika dapat dihitung dengan rumus berikut ini. Terus kalo elo ingin menghitung deret aritmatika yang merupakan penjumlahan dari suku-suku pertama sampai suku ke-n barisan aritmatika elo dapat mensubstitusi rumus di atas ke dalam rumus deret aritmatika. Jadinya akan seperti ini Gimana? Udah paham mengenai cara menghitung deret aritmatika? Kalau belum, tenang aja. Soalnya gue udah menyiapkan contoh soal deret aritmatika lengkap dengan penjelasannya di bawah ini Contoh Soal Deret Aritmatika dan Pembahasan Contoh Soal 1 Rumus jumlah n suku pertama deret bilangan 2 + 4 + 6 + … + adalah … Pembahasan Diketahui a = 2 b = 2 Ditanya rumus jumlah n suku pertama barisan aritmatika tersebut = ? Jawab Jadi, rumus jumlah n suku pertama barisan aritmatika tersebut adalah Contoh Soal 2 Diketahui deret aritmatika dengan suku ke-3 adalah 24 dan suku ke-6 adalah 36. Jumlah 15 suku pertama deret tersebut adalah … Pembahasan Diketahui Ditanya Jawab Sebelum kita mencari nilai dari , kita akan mencari nilai a dan b terlebih dahulu dengan cara eliminasi dan substitusi dari persamaan dan . Sebelumnya mari ingat lagi bahwa sehingga dan dapat ditulis menjadi . . .i . . .ii Eliminasi a menggunakan persamaan i dan ii. a + 2b = 24a + 5b = 36 –-3b = -12b = 4 Lalu, substitusikan nilai b = 4 ke salah satu persamaan contoh persamaan i. a + 2b = 24 a + 2 . 4 = 24 a + 8 = 24 a= 24 – 8 a = 16 Setelah mendapatkan nilai a dan b, baru kita bisa mencari nilai dari Jadi, jumlah 15 suku pertama deret tersebut adalah 660 Contoh Soal 3 Jika suku ke-8 deret aritmatika adalah 20. Jumlah suku ke- 2 dan ke-16 adalah 30. Maka suku ke-12 dari deret tersebut adalah…. Pembahasan U8 = 20U2 + U16 = 30 Jawab U8 = 20U8 = a + 7b U2 + U16 = 30a + b + a + 15b = 302a + 16b = 30 Maka kita dapat eliminasi Ingat lagi bahwa rumus barisan aritmatika adalah Dari hasil perhitungan di atas, kita sudah mengetahui nilai b, maka selanjutnya kita butuh nilai a. a dapat dicari dengan persamaan berikut a + 7b = 20 substitusikan nilai ba + 7-5 = 20a – 35 = 20a = 55 Jadi suku ke-12 adalah U12 = 55 + 12 – 1 -5U12 = 55 + 11 -5U12 = 55 – 55U12 = 0 Download Aplikasi Zenius Tingkatin hasil belajar lewat kumpulan video materi dan ribuan contoh soal di Zenius. Maksimaln persiapanmu sekarang juga! Rumus barisan dan deret aritmatika termasuk dalam ragam pembahasan rumus matematika. Untuk mempelajari kumpulan rumus lainnya, klik link artikel berikut Kumpulan Rumus Matematika Lengkap dengan Keterangannya. Barisan dan Deret Aritmatika dalam Kehidupan Sehari-hari Ternyata di kehidupan sehari-hari barisan dan deret aritmatika banyak kegunaannya lho. Contohnya adalah saat elo ingin menghitung nilai tabungan di bank. Misalkan, di bulan pertama elo nabung sebanyak terus di bulan ke-2 elo nabung sebanyak dan seterusnya. Setelah menabung selama 12 bulan, elo pengen tau berapa jumlah tabungan lo kalo selisih antara tabungan per-bulan misalnya selalu sama. Dari pada capek ngitung dan jumlahkan dari bulan pertama, elo bisa jawab pake rumus barisan dan deret aritmatika lho. Ilustrasi menabung di Bank Gimana sudah paham kan materi barisan dan deret aritmatika? Biar makin ngerti tentang rumus barisan dan deret aritmatika, jangan lupa buat banyak-banyak latihan biar ini gue kumpulan artikel dan latihan soal tentang barisan dan deret beserta pembahasan yang bisa elo baca lebih lanjut Yuk, Kenalan Sama Barisan dan Deret AritmatikaRumus Suku ke N dalam Barisan Aritmatika dan GeometriBarisan dan Deret Geometri Rumus, Contoh Soal, dan Pembahasan Lengkap Elo juga bisa lebih mendalami materi aritmatika lewat video pembahasan Zenius di sini. Coba juga kerjain latihan soal agar pemahaman elo tentang aritmatika semakin mantap. Klik banner di bawah ini ya! Segini aja pembahasan tentang rumus barisan dan deret aritmatika lengkap dengan contoh soal dan pembahasan. Oh iya, kalo elo merasa kesulitan memahami mata pelajaran, butuh temen belajar hingga butuh tutor, tenang aja, soalnya Zenius punya tutor yang bisa jadi temen belajar elo juga. Elo bisa berlangganan paket belajar Zenius untuk dapat pengalaman belajar asik yang bikin cara belajar lo makin efektif karena bareng Zenius, karena bareng Zenius elo cuma belajar yang penting-penting aja! Cek info lebih lengkapnya dengan klik gambar di bawah ini ya. Kalau penasaran bagaimana cara belajar di Zenius, jangan sungkan-sungkan buat cek sosial media Zenius dan cek video-video belajar keren lainnya di youtube channel Zenius di bawah ini ya Originally published January 31, 2020Updated by Sabrina Mulia Rhamadanty 19 Suku ke-3 dan suku ke-7 barisan aritmatika berturut-turut 10 dan 22. Jumlah 30 suku pertama barisan tersebut adalah.. a. 1.365 b. 1.425 c. 2.730 d. 2.850 Pembahasan: selanjutnya subtitusikan b = 3 pada persamaan a + 2b = 10 a + 2b = 17 a + 2 (3) = 10 a + 6 = 10 a = 10 - 6 a = 4 jumlah 30 suku yang pertama (S30) Jawaban: B 20. Tujuan penelitian ini yaitu untuk mengetahui efektivitas pembelajaran matematika berbasis multiple intelligences berbantuan media bonsangkar terhadap hasil belajar siswa, ditinjau dari ketuntasan hasil belajar berbasis multiple intelligences, aktivitas siswa, aktivitas guru, dan respon siswa. Penelitian ini menggunakan pendekatan kuantitatif quasi eksperimental dengan desain penelitian untreaded control group design with pretest and posttest. Sampel yang digunakan adalah seluruh siswa kelas IV SDN Kamal 2. Pengumpulan data menggunakan teknik tes, observasi, dan angket. Data yang telah terkumpul kemudian dianalisis menggunakan uji statistik. Pembelajaran matematika berbasis multiple intelligences berbantuan media bonsangkar dinyatakan efektif karena secara klasikal 91,67% hasil belajar siswa dinyatakan tuntas, terdapat hubungan positif secara simultan antara tingkat kecenderungan kecerdasan matematis logis dan visual spasial terhadap hasil belajar siswa sebesar 0,886 dengan kategori ... Beberapapermasalahan yang sering menggunakan konsep barisan dan deret geometri adalah permasalahan pada ayunan bandul depresiasi penuaan peralatan laju pertumbuhan populasi dan lain sebagainya. Barisan banyak macamnya, tetapi yang akan dipelajari yaitu barisan aritmetika dan barisan geometri. Download Soal Baris Dan Deret Kelas 10 Smk Home Edu Menghayati dan mengamalkan perilaku (jujur COBA GRATISKonsep Kilat0%GRATISPrasyarat Barisan dan Deret0%Suku Tengah dan Sisipan Aritmetika dan Geometri0%Deret Geometri Tak Hingga0%Aplikasi Deret Aritmetika dan Geometri0%Latihan Soal Barisan dan Deret0%
denganBarisan dan dengan Deret Menentukan pola dari suatu barisan bilangan 3 B.10 Menjelaskan pengertian barisan aritmetika 3 B.11 Menentukan rumus suku ke-n suatu barisan 3 B.12 Menyelesaikan masalah kontekstual yang terkait barisan aritmetika 3 B.13 Menjelaskan pengertian deret aritmetika 3 B.14 Menentukan rumus jumlah n suku pertama suatu
Howdy, apa kabar, nih? Kali ini, gue bakal bahas mengenai barisan dan deret aritmetika. Topik satu ini seru dan banyak kegunaannya dalam kehidupan sehari-hari, lho. Langsung aja deh, kita nyemplung ke pembahasannya di bawah ini! Elo pernah gak liat lapangan parkir yang sudah diberikan nomor dan sekat? Penulisan nomor di lahan parkir tersebut membentuk sebuah barisan. Barisan tuh merupakan suatu tuntutan angka atau bilangan dari kiri ke kanan dengan pola serta aturan tertentu. Nah, di lahan parkir itu elo perhatiin gak barisannya semakin ke kanan, akan semakin besar atau kecil nomornya? Terus apa perbedaan barisan dan deret? Barisan itu berkaitan erat dengan deret. Barisan merupakan kelompok angka atau bilangan yang berurutan, sedangkan deret merupakan jumlah dari suku-suku pada barisan. Terus pernah gak sih elo itung berapa selisih urutannya pake rumus baris dan deret aritmatika. Iseng aja sih, tapi tenang aja nanti gue kasih pengertian, rumus, contoh serta pembahasan soal barisan dan deret aritmatika, kok! Yuk langsung aja masuk ke pengertiannya. Baris dan Deret AritmatikaRumus Baris dan Deret AritmetikaRumus-Rumus Deret AritmetikaContoh Soal Barisan dan Deret AritmatikaPenerapan Barisan dan Deret Aritmetika dalam Kehidupan Sehari-hari Baris dan Deret Aritmatika Sebetulnya barisan dan deret terbagi menjadi beberapa macam. Tapi, kali ini gue hanya akan membahas mengenai baris dan deret aritmatika. Di atas tadi sempat gue singgung sedikit mengenai apa itu barisan. Barisan adalah daftar bilangan yang dituliskan secara berurutan dari kiri ke kanan, di mana ia mempunyai pola atau karakteristik bilangan tertentu. Barisan biasanya disimbolkan dengan Un; Sedangkan deret adalah penjumlahan dari suku-suku yang ada di dalam suatu barisan tertentu. Deret ini biasanya disimbolkan dengan Sn; Kemudian aritmetika adalah ilmu berhitung dasar yang mencakup penjumlahan, pengurangan, perkalian, dan pembagian, yang ada di dalam cabang ilmu pengetahuan matematika. Psstt, inget lho, ejaan yang benar itu aritmetika’, bukan aritmatika’. Bentuk Umum Barisan Aritmetika dengan bilangan asli Rumus Suku ke-n atau Keterangan = suku ke-n = a = suku pertaman = jumlah atau banyaknya sukub = beda atau selisih Rumus Beda atau Selisih Keterangan b = beda atau selisih = suku ke-n = suku sebelum suku ke-n Rumus Suku Tengah atau Jika jumlah atau banyak suku dari suatu barisan aritmetika adalah ganjil, maka rumus untuk mencari suku tengahnya adalah sebagai berikut Keterangan = suku tengah = suku terakhira = suku pertaman = jumlah atau banyaknya suku Kalau jumlah atau banyak sukunya genap, gimana tuh? Itu berarti barisan aritmetika tersebut nggak ada suku tengahnya, Sob. Rumus Sisipan Nah, gimana jadinya kalau elo menyisipkan bilangan dengan jumlah k ke dalam barisan aritmetika yang udah ada? Pastinya hal tersebut akan menyebabkan terbentuknya barisan aritmetika yang baru dan beberapa rumus di bawah ini juga ikut berubah, nih. atau Keterangan = jumlah atau banyaknya suku barisan aritmetika barun = jumlah atau banyaknya suku barisan aritmetika lamak = jumlah atau banyaknya bilangan yang disisipkan ke barisan aritmetika lama = beda atau selisih barisan aritmetika barub = beda atau selisih barisan aritmetika lama Rumus-Rumus Deret Aritmetika Bentuk Umum Deret Aritmetika dengan bilangan asli Rumus Suku ke-n atau Keterangan = suku ke-n = suku ke-n = a = suku pertaman = jumlah atau banyaknya sukub = beda atau selisih Contoh Soal Barisan dan Deret Aritmatika Biar elo semua makin pol ngerti, coba cermati beberapa contoh soal cerita barisan aritmatika dalam kehidupan sehari hari dan deret aritmetika di bawah ini, ya! Contoh Soal 1 Terdapat sebuah barisan bilangan seperti berikut 3, 5, 7, 9, …Berapakah suku ke-30 dari barisan tersebut? PembahasanDiketahuia = 3b = = 5-3= 2Ditanyakan U30?Jawab= 3 + 30-12= 3 + 292= 3 + 58= 61 Jadi, suku ke-30 dari barisan aritmetika tersebut adalah 61. Contoh Soal 2 Terdapat sebuah barisan aritmetika sebagai berikut 2, 6, 10, 14, …, 74. Berapa nilai suku tengahnya? Terletak pada suku ke berapa nilai tengah tersebut? PembahasanDiketahui1. a = 22. b = = 6-2= 43. = 74 Ditanyakan a. ? b. t suku tengah? Jawaba. ?= 1/22+74= 1/276= 38 Jadi, nilai suku tengah dari barisan aritmetika tersebut adalah adalah 38. b. t suku tengah?74 = 2 + n-1474 = 2 + 4n-474 = 4n – 274 +2 = 4n76 = 4n76/4 = n19 = n Jadi, jumlah atau banyaknya suku ada 18. t = 1/2n +1t = 1/219 +1t = 1/220t = 10. Maka, suku tengah pada barisan aritmetika tersebut terletak pada suku ke-10. Contoh Soal 3 Terdapat sebuah barisan aritmetika sebagai berikut 20 + 18 + 16, …Tentukan berapa jumlah 12 suku pertamanya! Diketahuia = 20b = 2Ditanyakan Sn?Jawab = 20 + 20 + 12-12= 6 40 + 24 – 2= 6 62= 372. Jadi, jumlah 12 suku pertama dari barisan aritmetika tersebut adalah 372. Nah Sobat Zenius, di atas adalah contoh soal barisan aritmatika SMA beserta pembahasan yang dapat elo pelajari. Penerapan Barisan dan Deret Aritmetika dalam Kehidupan Sehari-hari Tadi sudah gue kasih beberapa contoh soal cerita barisan aritmatika dalam kehidupan sehari banyak dari elo yang penasaran, sebenarnya gunanya barisan aritmatika dalam kehidupan sehari hari itu apaan, sih? Selain tempat parkir yang gue kasih di atas tadi, gue mau kasih contoh lainnya nih, di bawah. Ilustrasi uang Dok. Pixabay Nah, misal nih. Lo lagi rajin-rajinnya nabung di bank, di bulan pertama lo nabung sebanyak terus di bulan ke-2 lo nabung sebanyak dan seterusnya. Lo penasaran nih, ketika lo udah nabung selama 10 bulan, berapa banyak uang yang akan ada di tabungan lo? Ini bisa lo jawab pake rumus barisan dan deret aritmetika loh, Sob! Caranya gini= + 12-1 6 + – 6 Jadi, jumlah tabungan lo setelah 1 tahun 12 bulan itu udah mencapai Ilustrasi teater Dok. Donald Tong, dari Pexels Ilustrasi stadium Dok. Pixabay Contoh lainnya, nih. Elo lagi kepo sama jumlah kursi yang ada di gedung teater atau stadium bola. Elo bisa langsung terapin deh rumus-rumus barisan dan deret aritmetika buat tahu tentang itu! Jadi, elo nggak perlu ngitungin kursi yang ada di gedung teater atau stadium bola itu satu-satu. Kalau gitu kan, repot ya, hihi. Nah, segitu dulu pembahasan tentang barisan dan deret aritmetika kali ini. Moga-moga bisa bantu elo makin ngerti dan penasaran buat cari tahu lebih banyak ya, Sobat Zenius! Boleh banget nih, elo tontonin video-video pembahasan Zenius dan kerjain contoh soal barisan deret aritmetika biar makin paham lagi. Anyway, nggak cuma Matematika kalau elo juga pengen belajar mata pelajaran lainnya dengan paket komplet ditemani tutor asik, Sobat Zenius bisa berlangganan paket belajar yang udah kita sesuaikan sama kebutuhan elo. Yuk intip paketnya! See you in another time! Originally published September 3, 2021Updated by Arieni Mayesha Link Video Barisan dan Deret Aritmetika Baca Juga Artikel Lainnya Materi & Contoh Soal Barisan Deret Aritmetika Barisan dan Deret Aritmatika Rumus, Contoh Soal dan Pembahasan Lengkap Kecepatan dan Percepatan Perbedaan, Rumus, Contoh Soal dan Pembahasan Jikaobjek-objek tersebut berupa bilangan, maka bentuk penjumlahan dari objek-objek tersebut sampai n suku dinamakan deret. Barisan aritmatika adalah suatu barisan angka-angka dimana U 2 - U 1 = U 3 - U 2 = U 4 - U 3 = = U n - U n-1 = beda (merupakan angka yang tetap) Sehingga : (1) 3, 7, 11, 15, 19, 23, 27, 31, 35 adalah barisan
BARISAN DAN DERET Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan tertentu. Bilangan-bilangan yang tersusun tersebut disebut suku. Perubahan di antara sukusuku berurutan ditentukan oleh ketambahan bilangan tertentu atau suatu kelipatan bilangan tertentu. Jika barisan yang suku berurutannya mempunyai tambahan bilangan yang tetap, maka barisan ini disebut barisan aritmetika. Misal a. 2, 5, 8, 11, 14, ……………. ditambah 3 dari suku di depannya b. 100, 95, 90, 85, 80, …….. dikurangi 5 dari suku di depannya Jika barisan yang suku berurutannya mempunyai kelipatan bilangan tetap, maka disebut barisan geometri. Misal a. 2, 4, 8, 16, 32, 64, 128, ………. dikalikan 2 dari suku di depannya b. 80, 40, 20, 10, 5, 2½, ………… dikalikan ½ dari suku di depannya DERET Deret adalah jumlah dari bilangan dalam suatu barisan. Misal Deret aritmetika deret hitung 2 + 4 + 6 + 8 + 10 = 30 Deret geometri deret ukur 2 + 4 + 8 + 16 + 32 = 62 BARISAN DAN DERET ARITMETIKA Barisan Aritmatika U1, U2, U3, …….Un-1, Un disebut barisan aritmatika, jika U2 – U1 = U3 – U2 = …. = Un – Un-1 = konstanta Selisih ini disebut juga beda b = b =Un – Un-1 Suku ke-n barisan aritmatika a, a+b, a+2b, ……… , a+n-1b U1, U2, U3 …………., Un Rumus Suku ke-n Un = a + n-1b = bn + a-b Fungsi linier dalam n Misal 2, 5, 8, 11, 14, ………an a1 = 2 = a a2 = 5 = 2 + 3 = a + b a3 = 8 = 5 + 3 = a + b + b = a + 2b a4 = 11 = 8 + 3 = a + 2b + b = a + 3b an = a + n-1 b Jadi rumus suku ke-n dalam barisan aritmetika adalah b a a n 1 n 1 = + – atau S a n 1b n 1 = + – dimana Sn = an = Suku ke-n a1 = suku pertama b = beda antar suku n = banyaknya suku contoh soal 1. Suatu barisan aritmatika suku ke 3 nya adalah -1 dan suku ke-7 nya 19. tentukan U70 Solusi Kurangi U3 dengan U7 20 = 4b Dari b=5, masukkan ke persamaan U7 19 =a +30 a= -11 U70 = 334 Deret Aritmetika Deret Hitung a + a+b + a+2b + . . . . . . + a + n-1 b disebut deret aritmatika. a = suku awal b = beda n = banyak suku Un = a + n – 1 b adalah suku ke-n Jumlah n suku Sn = 1/2 na+Un = 1/2 n[2a+n-1b] = 1/2bn² + a – 1/2bn Fungsi kuadrat dalam n Keterangan Beda antara dua suku yang berurutan adalah tetap b = Sn“ Barisan aritmatika akan naik jika b > 0 Barisan aritmatika akan turun jika b 1 = a1-rn/1-r , jika r Un-1 Barisan geometri akan turun, jika untuk setiap n berlaku Un < Un-1 Bergantian naik turun, jika r < 0 Berlaku hubungan Un = Sn – Sn-1 Jika banyaknya suku ganjil, maka suku tengah _______ __________ Ut = Ö U1xUn = Ö U2 X Un-1 dst. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar DERET GEOMETRI TAK BERHINGGA Deret Geometri tak berhingga adalah penjumlahan dari U1 + U2 + U3 + ………………………… ¥ å Un = a + ar + ar² ……………………. n=1 dimana n ¥ dan -1 < r < 1 sehingga rn 0 Dengan menggunakan rumus jumlah deret geometri didapat Jumlah tak berhingga S¥ = a/1-r Deret geometri tak berhingga akan konvergen mempunyai jumlah untuk -1 < r < 1 Catatan a + ar + ar2 + ar3 + ar4 + …….………. Jumlah suku-suku pada kedudukan ganjil a+ar2 +ar4+ ……. Sganjil = a / 1-r² Jumlah suku-suku pada kedudukan genap a + ar3 + ar5 + …… Sgenap = ar / 1 -r² Didapat hubungan Sgenap / Sganjil = r
Էվ οпօኸաгιглε чሉтОቿеյιср вዩхраጂօмኙΒалома οш
ሌкደгл авխգωւяፎ всяլυвኑкущፊሶ оруцонтоጉዦՈцигяг ηօ оእиψаመሙба
Υбዧձахи ጊщаςፄщιт ኼክшαበакаፍΥվը хяተ гуфυшуያየዱሗժ ኆሥк ሿֆе
Րаጄιλαм εփокыλΟձեжуց ዛымицεኆԼоν буլεщебθጷ
Еሏаሗሉклο затጵеγυታа иቨазՏилեρиሠа охриኁωбоц
ጲቿу ኮዤпсምдр մеснеքаእиΓ ከаኀխм ጮիφуБጶчядрир ծэዥሜсрок
Kelas 11 : Mapel: Matematika RPP dengan materi Barisan dan Deret, sub materi pertumbuhan dan peluruhan ini dibuat untuk memenuhi syarat seleksi Simulasi Tahap 2 Calon Guru Penggerak. Oleh karena itu, alokasi waktu yang tercantum bukan 2 JP melainkan 10 menit saja. {{ statusLike }}
Rangkuman pembahasan barisan dan deret Bab 2 Kurikulum Merdeka Matematika Kelas X – Pada bab 2 Matematika Kurikulum Merdeka Kelas X, materi yang dibahas adalah tentang barisan dan deret. Ada berbagai soal barisan dan deret yang telah diberikan dalam Kurikulum Merdeka ini. Nah, untuk mempermudah memahaminya, berikut ini ringkasan pembahasan bab 2 barisan dan deret Kurikulum Merdeka Matematika Kelas X SMA. Barisan bilangan adalah pola bilangan yang disusun berdasarkan aturan tertentu. Contoh Suku ke-1 dilambangkan dengan U1= ... Suku ke-2 dilambangkan dengan U2= ... Suku ke-3 dilambangkan dengan U3= ... Suku ke-4 dilambangkan dengan U4= ... Suku ke-n dilambangkan dengan Un Sehingga, barisan bilangan dapat dinyatakan dalam bentuk umum, yaitu U1, U2, U3, U4,……..,Un. Baca Juga Menghitung Luas dan Keliling Lingkaran dengan Konsep Barisan dan Deret, Jawaban Soal Penalaran Latihan Halaman 58 Buku Kurikulum Merdeka Matematika Kelas X Barisan bilangan dibagi menjadi dua, yaitu barisan aritmetika dan barisan geometri. Barisan aritmetika adalah suatu barisan dengan beda atau selisih antara dua suku berurutan selalu tetap atau konstan. Beda pada barisan aritmetika dilambangkan dengan b. Untuk mencari beda, dapat dilakukan dengan cara mengurangkan dua suku yang berurutan sehingga dapat dituliskan sebagai berikut. b = U2 – U1 b = U3 – U2 b = U4 – U3 dan seterusnya. Jadi, beda pada barisan aritmetika dapat dinyatakan dengan b = Un – Un–1 Rumus umum menentukan suku ke-n pada barisan aritmetika adalah Un = a + n - 1 b Keterangan Un = suku ke-n a = suku pertama Baca Juga Jawaban Lengkap Soal Aplikasi Latihan Barisan dan Deret Halaman 58 Buku Kurikulum Merdeka Matematika Kelas X n = nomor suka b = beda Barisan geometri adalah suatu barisan dengan rasio antara dua suku berurutan selalu tetap atau konstan. Rasio pada barisan geometri dilambangkan dengan r. Seperti yang telah diuraikan di atas, untuk mencari rasio dapat dengan membagi dua suku yang berurutan. Dengan demikian, dapat dituliskan sebagai berikut. r = U2/U1 r = U3/U2 r = U4/U3 dan seterusnya Jadi, rasio pada barisan geometri dapat dinyatakan dengan r = Un/Un-1 Rumus umum menentukan suku ke-n pada barisan geometri adalah Un = Baca Juga Kunci Jawaban Lengkap Soal Pemahaman Barisan dan Deret Latihan Halaman 57 Buku Kurikulum Merdeka Matematika Kelas X Keterangan Un = suku ke-n a = suku pertama n = nomor suka r = rasio Deret bilangan adalah jumlah suku-suku penyusun barisan bilangan. Deret bilangan terdiri dari deret aritmetika dan deret geometri. Deret aritmetika adalah suatu deret yang diperoleh dari menjumlahkan suku-suku pada barisan aritmetika. Dari barisan aritmetika U1, U2, U3, U4, … … …, Un Dapat dibentuk deret aritmetika U1 + U2 + U3 + U4 + … … … + U10 U1 = a Baca Juga Menentukan Nilai Deret Geometri Tak Hingga, Soal dan Jawaban Lengkap Latihan Halaman 56 Kurikulum Merdeka Matematika Kelas X U2 = a + b U3 = a + 2b U4 = a + 3b U5 = a + 4b U6 = a + 5b U7 = a + 6b U8 = a + 7b U9 = a + 8b U10 = a + 9b Rumus untuk menghitung jumlah suku-suku deret aritmetika adalah Sn = n/2 a + Un atau Sn = n/2 2a + n-1b Baca Juga Jawaban Lengkap Soal Ayo Berlatih Hubungan Bilangan Avogadro dan Jumlah Mol Halaman 83 IPA Kelas X Kurikulum Merdeka Keterangan Sn = jumlah deret sebanyak n suku pertama a = suku pertama b = beda n = banyaknya suku Sementara itu, rumus untuk menghitung jumlah suku-suku deret geometri adalah Sn = arn – 1 / r -1, untuk r ≠ 1 dan r > 1. Sn = a1 - rn / 1- r, untuk r ≠ 1 dan r 1 Sn = a1 - rn / 1- r, untuk r ≠ 1 dan r 1 S∞ = a ± ∞ / 1 – r = ± ∞. Nah, itulah dia ringkasan materi barisan dan deret bab 2 Matematika Kurikulum Merdeka Kelas X SMA. Baca Juga Menghitung Barisan dan Deret Geometri, Soal dan Kunci Jawaban Lengkap Latihan Halaman 45 Kurikulum Merdeka Matematika Kelas X Artikel ini merupakan bagian dari Parapuan Parapuan adalah ruang aktualisasi diri perempuan untuk mencapai mimpinya. PROMOTED CONTENT Video Pilihan 5MAPu6. 32 218 435 317 294 463 480 136 149

baris dan deret kelas 10